skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shasha, Dennis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aldrich, Jonathan; Salvaneschi, Guido (Ed.)
    We present and verify template algorithms for lock-free concurrent search structures that cover a broad range of existing implementations based on lists and skiplists. Our linearizability proofs are fully mechanized in the concurrent separation logic Iris. The proofs are modular and cover the broader design space of the underlying algorithms by parameterizing the verification over aspects such as the low-level representation of nodes and the style of data structure maintenance. As a further technical contribution, we present a mechanization of a recently proposed method for reasoning about future-dependent linearization points using hindsight arguments. The mechanization builds on Iris' support for prophecy reasoning and user-defined ghost resources. We demonstrate that the method can help to reduce the proof effort compared to direct prophecy-based proofs. 
    more » « less
  2. Database and data structure research can improve machine learning performance in many ways. One way is to design better algorithms on data structures. This paper combines the use of incremental computation as well as sequential and probabilistic filtering to enable “forgetful” tree-based learning algorithms to cope with streaming data that suffers from concept drift. (Concept drift occurs when the functional mapping from input to classification changes over time). The forgetful algorithms described in this paper achieve high performance while maintaining high quality predictions on streaming data. Specifically, the algorithms are up to 24 times faster than state-of-the-art incremental algorithms with, at most, a 2% loss of accuracy, or are at least twice faster without any loss of accuracy. This makes such structures suitable for high volume streaming applications. 
    more » « less
  3. null (Ed.)
  4. Multicopy search structures such as log-structured merge (LSM) trees are optimized for high insert/update/delete (collectively known as upsert) performance. In such data structures, an upsert on keyk, which adds (k,v) wherevcan be a value or a tombstone, is added to the root node even ifkis already present in other nodes. Thus there may be multiple copies ofkin the search structure. A search onkaims to return the value associated with the most recent upsert. We present a general framework for verifying linearizability of concurrent multicopy search structures that abstracts from the underlying representation of the data structure in memory, enabling proof-reuse across diverse implementations. Based on our framework, we propose template algorithms for (a) LSM structures forming arbitrary directed acyclic graphs and (b) differential file structures, and formally verify these templates in the concurrent separation logic Iris. We also instantiate the LSM template to obtain the first verified concurrent in-memory LSM tree implementation. 
    more » « less